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Abstract

A design methodology for wave-absorbing active material system is reported. The design enforces
equivalence between an assumed material model having wave-absorbing behavior and a set of target
feedback controllers for an array of microelectro-mechanical transducers which are integral part of the
active material system. The proposed methodology is applicable to problems involving the control of
acoustic waves in passive–active material system with complex constitutive behavior at different length-
scales. A stress relaxation type one-dimensional constitutive model involving viscous damping mechanism
is considered, which shows asymmetric wave dispersion characteristics about the half-line. The acoustic
power flow and asymptotic stability of such material system are studied. A single sensor non-collocated
linear feedback control system in a one-dimensional finite waveguide, which is a representative volume
element in an active material system, is considered. Equivalence between the exact dynamic equilibrium of
these two systems is imposed. It results in the solution space of the design variables, namely the equivalent
damping coefficient, the wavelength(s) to be controlled and the location of the sensor. The characteristics of
the controller transfer functions and their pole-placement problem are studied.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Control of traveling waves in structures have been studied extensively by various authors [1–7].
This is one of the important areas of development in distributed parameter active/passive control
see front matter r 2005 Elsevier Ltd. All rights reserved.
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system for high-performance adaptive structures. Typical applications of this wave control
problem are the control of structure-borne vibration and noise, disturbance rejection in high-
speed flexible manipulators, precision broadband control of pointing devices, space systems in
microgravity environment, etc.
Structural wave control problem leads to the Low Authority Control (LAC) problem [8,9] as

opposed to the High Authority Control (HAC) problem, the latter being concerned with the
steady-state vibration. This is of particular significance in developing auxiliary control system for
disturbance rejection in large space structures, where the controller natural frequencies must lie
far above several structural natural frequencies [10]. Although the HAC problem is generally
analyzed using modal method in second-order form or state-space method in first-order form,
both the HAC as well as LAC problems can be treated efficiently using harmonic wave approach
[3,11,12]. In harmonic wave approach for designing wave controller, most of the models
developed till date are either based on wave cancellation [1,4,13] or based on minimization of
frequency domain cost over prescribed frequency band [14–16]. Stability in collocated LAC can be
ensured by providing a compensator which is strictly positive real [5,17,18]. But, in non-collocated
LAC and HAC, it is essential to identify the bound on the non-collocated configuration defined
by the sensor–actuator locations, feedback gains, etc. A method for optimal gain selection based
on Lyapunov’s direct method and wave equation in Laplace domain was proposed by Alli and
Singh [5]. They obtained the bounds on the gain parameters by studying the root-locus for
collocated and non-collocated configuration. Although such analytical approach ensures the
stability of the closed-loop MIMO system by boundary control, its application for disturbance
rejection in complex skeletal structures appears numerically intensive. Currently there are two
major difficulties toward the development of wave-absorbing controller based on wave
cancellation approach, especially for non-collocated configuration. One is the energy required
for perfect cancellation of individual wave modes. It has been reported by Gardonio and Elliott
[15] that cancellation of any one of the propagating wave modes in a rod/beam creates additional
secondary waves at the scattering termination. Similar effect has also been reported by Roy
Mahapatra et al. [12] while studying the dynamics of single-actuator-multiple-waves. Under-
standing of the bounded energy input for partial cancellation of the wave modes remains an open
area of research. The second difficulty is the instability due to the synchronization error in wave
cancellation, which is more likely to occur at higher frequencies.This is due to the high-frequency
limitation of the controller [2,19]. The acoustic limit of the controller is posed by the finite time
delay, which gets introduced due to the interface electronics and the digital signal processor for a
given feedback control algorithm. Non-dispersive waves propagate with constant group speed,
whereas dispersive waves in a beam propagate with group speed proportional to the square root
of the excitation frequency. Hence, it is essential to introduce appropriate robustness against time
delay in the design of the wave-absorbing controller. Related understanding is also not well
reported. While implementing the active wave controller, it is generally emphasized that the use of
additional passive devices augments the overall performance of the active/passive system. Active/
passive Tuned Mass Dampers (TMDs) are typically designed based on this approach, where the
high-frequency components are attenuated by the viscoelastic mechanisms, and few low-
frequency resonant modes are attenuated actively by the anti-resonance of the TMD dynamics.
Due to tremendous development in materials technologies, there is a wide possibility that the

passive damping or wave attenuation properties can be efficiently tailored by controlling the
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microstructure of the material. For example, it is possible to augment the passive damping
performance by introducing stiffness/inertia modulation [20,21]. Lurie [22] has proposed a
geometric method based on characteristic lines to visualize the screening phenomenon, which can be
used in the design of rank-one laminated composite to block the wave transmission through certain
segment of an one-dimensional waveguide. Taking such concept one-step forward, one can design
the material-intrinsic damping parameters for stability and optimal control of the wave transmission
through such material system under any unknown disturbance. There is another possibility that
given a rod/beam like finite waveguide with conventional homogeneous material properties, one can
design microcontrollers with feed-back MEMS sensors and actuators, periodically placed along the
waveguide span, to perform the above task. That is to provide the active damping capability, which
is equivalent to the intrinsic damping of another microstructure controllable material, and
associated stability and robustness. A basic modeling, analysis and design framework is reported in
this paper to achieve the above objectives. Similar other active/passive mechanisms for design of
LAC can also be easily implemented following the same approach. Also, the approach is readily
applicable to complex geometry involving network of waveguides.
2. Material constitutive models with spatio-temporal modulation and dissipation

Consider the longitudinal wave propagation in a one-dimensional waveguide, in which the material
constitutive model is governed by either a passive material system with certain spatio-temporal
dynamics of the microstructure (called hereafter as passive) or an active system with electro-
magnetically controlled state of microstructure (called hereafter as active). The idea of establishing an
equivalence between these two systems plays the central role in this paper while developing a
methodology for controlling a distributed parameter system in one-dimensional space and time.

2.1. Passive material system

This is a hypothetical case of a rod shown in Fig. 1(a) having microstructured material. Assume
that the effective properties of the material can be obtained by homogenizing the appropriate
microstructural properties [23,24] in the scale of the smallest wavelength (lm). Here lm can be
treated as the mesoscopic scale. For the one-dimensional shape in macroscale, the effective elastic
modulus can be expressed as (1; 1) component of the homogenized elastic stiffness tensor

Q ¼
1

lm

Z lm

0

q2W
qF qF

dx, (1)

where W is the strain energy density due to microstructural deformation and other non-
mechanical effects. F is the deformation gradient expressed as

F ¼

1þ
qu

qx
0

qu

qz
0 1 0
qw

qx
0 1

2
66664

3
77775, (2)
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Fig. 1. (a) Rod of microstructured material having viscous dissipation mechanism. (b) Rod with arrays of layered

piezoelectric actuators and feedback sensors. (c) Rod with arrays of stacked piezoelectric actuators and feedback

sensors.
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(u;w) are the longitudinal and transverse displacements defined in the macroscopic coordinate
system (x; z) and time t: In order to evaluate Eq. (1), it is necessary to define the energy density W
in terms of the field variables in continuum scale (macroscopic scale) and any additional form of
energy functional that takes part in the dynamics where the continuum framework breaks down.
The rationale employed later in this paper while developing the control system is that a truly
multiscale material system, as realized above, leads to some form of inelastic behavior in the
macroscopic scale. In the present problem, the macroscopic scale is the scale in which the
proposed control is assumed to be effective. In order to investigate the possible nature of inelastic
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behavior arising through a general form of energy functional, we employ the method of multiple
scale and obtain the governing equations. This is discussed below. A microscopic scale is first
introduced with the coordinate system (x1; z1) and slow time (t1), which are related to the
macroscopic scale as

x ¼ �x1; z ¼ �z1; t ¼ �t1, (3)

where � is a small parameter associated with the geometry of the microstructure defined next. Let
us consider an unit cell in (x1; z1) with a dominant phase A of host material in crystalline or
cellular network form and another phase B of material as inclusion or void. Let the small
parameter � be the volume fraction of phase B in the unit cell. Then the cell averaged elastic
stiffness component (E1) and the cell averaged mass density (r1) can be defined, respectively, as

E1 ¼ EAð1� �Þ þ �EB; r1 ¼ rAð1� �Þ þ �rB, (4)

where the subscripts A and B; respectively, indicate the material properties of phases A and B:
Further, we shall assume � ¼ �ðx1; z1; t1Þ; which is adequate to represent statistical pattern of the
microstructure and phase kinetics. For the sake of simplicity while dealing with the one-
dimensional case, the kinematics due to transverse motion w is neglected. The longitudinal
displacement is expressed as

u ¼ u0ðx; tÞ þ �u1ðx1; z1; t1Þ, (5)

where u0 and u1 are the longitudinal displacements defined, respectively, in the macroscopic and
the microscopic scales. Using the usual definition of green strain tensor

E ¼ 1
2
ðFTF� IÞ (6)

and following Eq. (2), the longitudinal strain can be written as

exx ¼
qu

qx
þ

1

2

qu

qx

� �2

þ
1

2

qu

qz

� �2

. (7)

The inelastic part in the energy functional is due to the geometry of the microstructure,
electromagnetic polarization of the domains and dynamics of the domain interfaces. Their
contribution in the energy functional is assumed here as directly proportional to the volume of
phase B, which leads to

W ¼

Z
O1

1

2
E1exx þ �Pðx1; z1; t1; � � �Þ

� �
exx dO, (8)

where P is a quasi-linearized force field as a function of the current state of the microstructure.
Such a choice of W eventually leads to the first Piola–Kirchoff stress component

sxx ¼ E1exx þ �P (9)

and the equilibrium equation can be expressed as

qsxx

qx
¼

q2u
qt2

. (10)

Simplifying Eq. (10) using the two-scale expansion of the displacement given in Eq. (5) and noting
the total differentials q! q0 þ ð1=�Þq1; and then isolating the linear terms according to the order
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of �; we get

Oð��1Þ : EA

q2u1
qx2

1

¼ rA

q2u1

qt21
þ ðrB � rAÞ

q�
qt1

qu0

qt
þ

qu1

qt1

� �
, (11a)

Oð1Þ : EA

q2u0
qx2
þ ðEB � EA þPÞ

q2u1
qx2

1

þ
qP
qx1

qu0

qt
þ

qu1

qt1

� �

¼ rA

q2u0
qt2
þ ðrB � rAÞ

q2u1

qt1
, ð11bÞ

Oð�Þ : ðEB � EA þPÞ
q2u0
qx2
¼ ðrB � rAÞ

q2u0

qt2
. (11c)

Note that the nonlinear coupled terms have been neglected, the condition qu1=qz1 ¼ 0 has been
imposed and two additional constraints

q�
qx1
¼ 0;

q�
qz1
¼ 0, (12)

obtained by considering the terms above Oð��1Þ have been used. Since we have only two variables
u0 and u1 and the force field P is prescribed in quasi-linearized form, therefore only the Eqs. (11a)
and (11b) need to be considered, which correspond to higher-order contributions in � as compared
to Oð�Þ: It is clear from the coupled system in Eqs. (11a)–(11b) that they represent dispersive and
inhomogeneous wave propagation, when q�=qt1a0; qP=qx1a0: Moreover, if one considers the
macroscopic gradation of the microstructure by replacing � with �0ðxÞ�ðx1; z1; t1Þ in Eqs. (3)–(5)
and following the subsequent steps, where �0 is a specified gradation parameter, then the spatial
modulation of the propagation characteristics is obvious. Hence, for rate sensitive and quasi-
linearized dynamics of the microstructures with macroscopic gradation, the macroscopic
properties can be represented through spatio-temporal modulation of the properties as

Qðx; tÞ ¼ Q0 þ aQSðx; tÞ; rðx; tÞ ¼ r0 þ arSðx; tÞ, (13)

where Q0 and r0 are, respectively, the rate-independent part of the stiffness and mass density. aQ;
ar are constants. A suitable choice of the spatio-temporal modulation can be

Sðx; tÞ ¼ sin 2px=lm

� �
sin omtð Þ, (14)

where om is the frequency of microstructural oscillation, which is expected to be in the higher side
of the frequency band of macroscopic wave propagation. The modulated properties described in
Eq. (13) may be employed in designing certain band-pass or band-gap behavior. The combination
of rate-dependent and rate-independent properties can be homogenized in the scale of lm; but here
one needs to consider the momentum balance equations. This aspect can be found in published
literature, e.g. [25].
In order to quantify the effect of inelasticity in the passive material system by observing Eqs.

(11a)–(11b) into a linearized form of macroscopic constitutive model, a stress relaxation-type
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constitutive model

sxx ¼ Q11exx � Z
qu

qt
(15)

is considered, which is used to design an equivalent controller in this paper. Z is a viscous damping
coefficient (a rate parameter after homogenization in the mesoscopic scale lm).
2.2. Active material system

Since the passive material system discussed in Section 2.1 with a desired spatio-temporal
modulation is difficult to manufacture using the present-day technologies, therefore an active
equivalent of such system may be considered. One possibility of such active system is an elastic/
piezoelectric rod structure (layers/stacks with parametric modulation) and actuation in closed-
loop as shown in Fig. 1(b) and (c). In such active system the elastic domain (denoted as OðeÞ)
follows the constitutive model sðeÞxx ¼ E

ðeÞ
1 eðeÞxx and the piezoelectric domain (denoted by OðpÞ) follows

the constitutive model sxx ¼ E
ðpÞ
1 exx � e3jEj; j ¼ 1; 3; where Ej is the electric field causing in-plane

or transverse polarization of the piezoelectric crystal, eij are the piezoelectric coefficients. The
dynamics of the elastic and the piezoelectric domains can be described, respectively, asZ

q
qx

E
ðeÞ
1

quðeÞ

qx

� �
dz ¼

Z
q
qt

rðeÞ
quðeÞ

qt

� �
dz; ðx; zÞ 2 OðeÞ, (16a)

Z
q
qx

E
ðpÞ
1

quðpÞ

qx
� e3jEj

� �
dz ¼

Z
q
qt

rðpÞ
quðpÞ

qt

� �
dz; ðx; zÞ 2 OðpÞ (16b)

with the kinematics and equilibrium of the interfaces at Gðxk; zkÞ given by

uðeÞ ¼ uðpÞ; ðx; zÞ 2 Gðxk; zkÞ, (17a)

Z
E
ðeÞ
1

quðeÞ

qx
dzþ

Z
E
ðpÞ
1

quðpÞ

qx
� e3jEj

� �
dz ¼ 0; ðx; zÞ 2 Gðxk; zkÞ. (17b)

Note that both the wave equations (Eqs. (16a)–(16b)) have second-order characteristics, and
hence there are two wave modes in both the domains, one is forward propagating and the other is
backward propagating. Therefore, considering a single harmonics and by denoting the forward
propagating wave as uþ and the backward propagating wave as u�; we have

uðpÞ ¼ uðpÞ
þ

þ uðpÞ
�

(18a)

and with the help of interface conditions in Eqs. (17a)–(17b) evaluated over a periodic or
aperiodic volume elements, there exists the following linear dependence between the displacement
field of the elastic and the piezoelectric domains

uðeÞ ¼ bþuðpÞ
þ

þ b�uðpÞ
�

, (18b)

bþ ¼ b� ¼ 1; ðx; zÞ 2 Gðxk; zkÞ, (18b)
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where bþ and b� are the functions of the material and geometric properties of the neighboring
piezoelectric domain. If velocity feedback is chosen for prescribing the electric field, then

E ¼ g
qu

qt
; u 2 fuðeÞ; uðpÞg, (19)

where g is a feedback gain parameter. Now, an equivalence can be observed between the passive
and the active system through the relationship between the rate parameter Z defined in Eq. (15)
with the feedback gain parameter g as Z ¼ ZðQij ; eij ; gÞ; where the dynamics of a representative
volume element with homogenized properties of the active system can be expressed as

I0
q2u
qt2
� A11

q2u
qx2
þ ZA

q2u
qxqt
¼ 0; ðx; zÞ 2 OðeÞ [ OðpÞ (20)

and the applied boundary conditions at x ¼ 0;L are

u ¼ uð0; tÞ; uðL; tÞ or A11
qu

qx
�

1

2
ZA

qu

qt
¼ f ð0; tÞ; f ðL; tÞ, (21)

where I0 ¼
R
rdz; A is the cross-sectional area, A11 ¼

R
Q11 dz and f ðx; tÞ is the longitudinal force.

The objective is now to design the parameter g as a function of the prescribed Z; and the associated
controller characteristics.
If the spatio-temporal modulation of the passive system properties described by Eq. (13) is

included, then it can be shown by comparing the corresponding governing equations and the
boundary conditions with Eqs. (20)–(21) that

3

2
ZA

q2u
qx qt

¼ arSðx; tÞ
q2u
qt2

. (22)

In this manner, an equivalence between the wave screening property of the passive system
(through the function Sðx; tÞ) and the design variable g for the active system can be established.
This condition is equivalent to generating microactuator force proportional to the strain rate,
which is equal to the passive force due to the modulated inertia (arSðx; tÞ) in the microstructured
material. Next, a methodology is described to design the controller for the active system having
the above equivalence with the passive system. Characteristics of the modified wave dispersion is
studied first.
3. Wave dispersion

Consider an excitation involving multiple harmonics. By applying the Discrete Fourier
Transformation (DFT) of the displacement field, one can write

uðx; tÞ ¼
XN

n¼1

ûðx;onÞe
iont ¼

XN

n¼1

ð ~uþe�ik1x þ ~u�e�ik2xÞeiont, (23)

where i ¼
ffiffiffiffiffiffiffi
�1
p

; on is the nth sampling frequency, N is the Nyquist frequency, û is the frequency
amplitude of the displacement, ~uþ and ~u� are the boundary-dependent wave coefficients
associated with, respectively, the forward and the backward propagating waves. k1 and k2 are the
wavenumbers. Similarly, the dynamic force is transformed into its frequency domain counterpart
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(denoted by overhead hat) as

f ðx; tÞ ¼
XN

n¼1

f̂ ðx;onÞe
iont. (24)

Substituting Eq. (23) in Eq. (20), the dispersion relation is obtained, whose roots are the
wavenumbers

k1;2 ¼ on �
ZA

2A11
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I0

A11
þ

ZA

2A11

� �2
s2

4
3
5. (25)

As outlined earlier, the objective here is to embed the above propagation characteristics of a
dissipative material system into the control system to be designed for the active rod, which is
otherwise undamped with wavenumbers k0 ¼ on

ffiffiffiffiffiffiffiffiffiffiffi
r=E1

p
; and we shall call it nominal system. For

the purpose of design, a bound on the damping coefficient Z is introduced, which is given by

ZA

2A11

� �2

¼ a
r

E1
; 0pap10. (26)

3.1. Modification of the speed of propagation

Eq. (25) indicates that the propagation is non-dispersive, hence the phase speed (o=k) is equal
to the group speed (do=dk). The phase speeds of the forward and the backward propagating
waves are, respectively, gþc and g�c; where c ¼

ffiffiffiffiffiffiffiffiffiffiffi
E1=r

p
the nominal speed of propagation in the

rod and

gþ ¼
ffiffiffi
a
p
þ

ffiffiffiffiffiffiffiffiffiffiffi
1þ a
p

; g� ¼ �
ffiffiffi
a
p
þ

ffiffiffiffiffiffiffiffiffiffiffi
1þ a
p

. (27)

Fig. 2 shows the variations in gþ and g�: It can be seen that the speed of the forward propagation
increases many times as compared to the speed of the backward propagation. This also means
that the symmetry of the wavefronts with respect to the point of incidence of the source
disturbance is no longer preserved.

3.2. Wave amplitude modulation

Consider the forward and the backward propagating waves in the active system with incident
disturbance f̂ ð0;onÞ at x ¼ 0: In closed-loop configuration, the wave in the positive x direction
(x40) and the wave in the negative x direction (xo0) are, respectively,

ûþ ¼
if̂ ð0;onÞ

A11k1 þ
1
2
ZAon

e�ik1x; û� ¼
if̂ ð0;onÞ

A11k2 þ
1
2
ZAon

e�ik2x. (28)

For both the wave components, the amplitude modulation becomes independent of the frequency
and can be expressed as

r ¼
jûþj

jûþ0 j
¼
jû�j

jû�0 j
¼

1ffiffiffiffiffiffiffiffiffiffiffi
1þ a
p , (29)
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where ûþ0 and û�0 are, respectively, the forward and the backward propagating waves in the
nominal system.
The frequency domain power flow at a given cross-section can be expressed as

P̂ ¼ 1
2

f̂ ðionûÞ�, (30)

where the superscript � stands for the complex conjugate. The additional power required to
provide the control can be estimated as the difference between the power flow in the active system
and the power flow in the nominal system (denoted by subscript 0). For the forward wave
propagation, this additional power can be derived as

DP̂
þ
¼ P̂

þ
� P̂

þ

0 ¼
1

2
o2

n

ffiffiffiffiffiffiffiffiffiffiffiffi
A11I0

p
1�

1ffiffiffiffiffiffiffiffiffiffiffi
1þ a
p

� �
ûþ0
�� ��2 (31)

and for the backward wave propagation, this additional power can be derived as

DP̂
�
¼ P̂

�
� P̂

�

0 ¼
1

2
o2

n

ffiffiffiffiffiffiffiffiffiffiffiffi
A11I0

p
1�

1ffiffiffiffiffiffiffiffiffiffiffi
1þ a
p

� �
û�0
�� ��2. (32)

It can be seen from Eqs. (31) and (32) that the input power has bounds, i.e., 0pDP̂
þ
oP̂

þ

0 and
0pDP̂

�
oP̂

�

0 ; since 0pao1:

3.3. System stability and wave absorbing property

Eqs. (31)–(32) show the boundedness of the compensating system, which can be designed to
provide the wave absorbing mechanism in the form of electro-mechanical transduction and heat
(in case of the active system) or in the form of microstructural kinetics and heat (if a passive
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system becomes realizable). Lyapunov’s direct approach can be employed here to study the
stability of the system response. Let the Lyapunov functional be

V ðtÞ ¼
1

2

Z L

0

Z
A

r
qu

qt

� �2

þ sxxexx

" #
dAdx. (33)

Differentiating once with respect to time and expanding in terms of the longitudinal displacement
u;

_VðtÞ ¼

Z L

0

I0
qu

qt

q2u
qt2
þ A11

qu

qx

q2u
qxqt
�

1

2
ZA

q2u
qt2

qu

qx
�

1

2
ZA

qu

qt

q2u
qx qt

� �
dx. (34)

Integrating Eq. (34) by parts, and with the help of Eq. (20) and using the following identity:Z L

0

q
qt

qu

qt

qu

qx

� �
dx ¼ 0, (35)

we get

_V ðtÞ ¼ f ðL; tÞ
q
qt

uðL; tÞ � f ð0; tÞ
q
qt

uð0; tÞ. (36)

For every single harmonic wave component (considering either of the forward or the backward
propagation separately), ð1

2
Þ f ðx; tÞ _uðx; tÞ is the time domain counterpart of the power defined in

Eq. (30). Hence, if the incident wave is applied at x ¼ 0 and the assumed damping mechanism is
placed at jxjXL; then the frequency domain form of Eq. (36) can be expressed with the help of
Eqs. (31) and (32) as

_̂V
þ

¼ �
2ffiffiffiffiffiffiffiffiffiffiffi
1þ a
p P̂ðL;onÞ

þ
0 � 2P̂ð0;onÞ

þ
0 ¼ �2 1þ

1ffiffiffiffiffiffiffiffiffiffiffi
1þ a
p

� �
P̂
þ
p0, (37)

_̂V
�

¼ �
2ffiffiffiffiffiffiffiffiffiffiffi
1þ a
p P̂ðL;onÞ

�
0 � 2P̂ð0;onÞ

�
0 ¼ �2 1þ

1ffiffiffiffiffiffiffiffiffiffiffi
1þ a
p

� �
P̂
�
p0, (38)

where P̂
þ

0 X0 and P̂
�

0 X0 are, respectively, the forward and the backward flowing powers in the
nominal system. It results in negative semi-definiteness of the Lyapunov functional and hence
ensures the asymptotic stability of the active system. In other words, jûþj ! 0; jû�j ! 0 as a40;
t!1; which is indicative of the wave absorbing behavior.
4. Spatial modulation of wave amplitude in finite active system

In order to study the effect of Z on the waves in finite rod, let us consider a finite rod element of
length L with nodal displacements ûð0;onÞ and ûðL;onÞ and the nodal forces f̂ ð0;on and f̂ ðL;onÞ:
The longitudinal displacement at any cross-section 0pxpL can be expressed as

ûðx;onÞ ¼ ½s�
f̂ ð0;onÞ

f̂ ðL;onÞ

( )
, (39)



ARTICLE IN PRESS

0 0.2 0.4 0.6 0.8 1
0

0.25

0.5

0.75

1
x 10-8

x/L

|s
 (

x,
ω

n)
ij|

|s11| (α = 0)
|s12| (α = 0)
|s11| (α = 1)
|s12| (α = 1)

Fig. 3. Frequency response function ½s� at various x=L in a finite rod, on=2p ¼ 10 kHz:

D. Roy Mahapatra / Journal of Sound and Vibration 289 (2006) 509–528520
where

½s� ¼ i½ e�ik1x e�ik2x �
ðA11k1 þ

1
2
ZAonÞ ðA11k2 þ

1
2
ZAonÞ

�ðA11k1 þ
1
2
ZAonÞe

�ik1L �ðA11k2 þ
1
2
ZAonÞe

�ik2L

" #�1
. (40)

Under unit impulse excitation, s11 and s12 are the frequency response functions for longitudinal
displacements at x: Fig. 3 shows the reduction in the amplitude of the frequency response and
shifts in the phases due to a ¼ 1 over x=L at a 10 kHz frequency.
5. Single-sensor non-collocated feedback

In order to introduce the damping mechanism in the active system, let us first consider a single
sensor for non-collocated feedback in a rod segment shown in Fig. 4. The design objective here is
to obtain the range of admissible Z and subsequently the controller transfer functions for a given
sensor location xs: If an equivalently damped system is assumed to achieve this, the dynamic
equilibrium equation (see [12]) for the rod segment can be written as

½K̂ �
ûð0;onÞ

ûðL;onÞ

( )
¼

f̂ ð0;onÞ

f̂ ðL;onÞ

( )
, (41)
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Fig. 4. Single sensor PID feedback wave controller configuration in rod segment of length L: s1 is the sensor connected

to the two controller c1 and c2; a1 and a2 are the two compliant actuators.
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where

½K̂ � ¼
i

e�ik2L � e�ik1L

�
ðA11k1 þ

1
2
ZAonÞ ðA11k2 þ

1
2
ZAonÞ

�ðA11k1 þ
1
2
ZAonÞe

�ik1L �ðA11k2 þ
1
2
ZAonÞe

�ik2L

2
4

3
5 e�ik2L �1

�e�ik1L 1

" #
. ð42Þ

A representative volume element in the active system can be designed using this dynamic
equilibrium as reference, if the two feedback controllers shown in Fig. 4 have the transfer
functions ĉ1 and ĉ2; such that

½K̂0�
ûð0;onÞ

ûðL;onÞ

( )
�

ĉ1ðonÞ

ĉ2ðonÞ

( )
ûs ¼

f̂ ð0;onÞ

f̂ ðL;onÞ

( )
, (43)

where ½K̂0� is the dynamic stiffness matrix for the nominal system (Z ¼ 0), ûs is the longitudinal
displacement at xs measured by the sensor. The controllers can be designed to perform as linear
PID controller, with their output or the actuation forces given by

ŷj ¼ ĉj ûs

¼ ½ĉ1jðionÞe
ionDt1 þ ĉ2je

ionDt2 þ ĉ3jðionÞ
2eionDt3 �ûs; j ¼ 1; 2, ð44Þ

where ĉ2j; ĉ2j and ĉ3j are, respectively, the transfer functions corresponding to velocity
proportional, integral and derivative input. Dt1; Dt2 and Dt3 are, respectively, the time delays
associated with these linear input. The longitudinal displacement at the sensor location can
further be expressed in terms of the boundary nodal displacements as

ûs ¼
1

sinðk0LÞ
½ sinðk0ðL� xsÞÞ sinðk0xsÞ �

ûð0;onÞ

ûðL;omÞ

( )
. (45)

The final step is now to equate Eqs. (42) and (43) and find the conditions for the sensor placement
(xs) and the range of admissible solution in ĉ1 and ĉ2 as functions of (Z; xs). Equating the ð1; 1Þ and
ð1; 2Þ components of the matrices on the left hand side of Eqs. (41) and (43) separately, and
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combining them into one equation by eliminating ĉ1; and then equating the real parts, we get,

sinðk0xsÞ

sinðk0ðL� xsÞÞ
¼

�
k0

sinðk0LÞ
þ
ðk1 � k2Þ½sinðk1LÞ � sinðk2LÞ�

2½1� cosððk1 � k2ÞLÞ�

k0
cosðk0LÞ

sinðk0LÞ
�
ðk1 � k2Þ sinððk1 � k2ÞLÞ

2½1� cosððk1 � k2ÞLÞ�

(46)

and equating the imaginary parts, we get,

sinðk0xsÞ

sinðk0ðL� xsÞÞ
¼ �

A11ðk1 � k2Þ½cosðk2LÞ � cosðk1LÞ�

A11c1 þ
1
2 ZAonc2

, (47)

where

c1 ¼ ½k1 cosðk2LÞ � k2 cosðk1LÞ�½cosðk2LÞ � cosðk1LÞ�

� ½k1 sinðk2LÞ � k2 sinðk1LÞ�½sinðk1LÞ � sinðk2LÞ�,

c2 ¼ ½cosðk2LÞ � cosðk1LÞ�
2 þ ½sinðk1LÞ � sinðk2LÞ�

2.

Similarly, by equating ð2; 1Þ and ð2; 2Þ components of the matrices on the left-hand side of Eqs.
(41) and (43) separately, and following the same procedure as earlier by eliminating ĉ2; the real
parts yield

sinðk0xsÞ

sinðk0ðL� xsÞÞ
¼

k0 cosðk0LÞ

sinðk0LÞ
�

c3

2½1� cosðk1 � k2ÞL�

�
k0

sinðk0LÞ
þ

c4

2½1� cosðk1 � k2ÞL�

, (48)

where

c3 ¼ ½k1 cosðk1LÞ � k2 cosðk2LÞ�½sinðk1LÞ � sinðk2LÞ�

� ½k2 sinðk2LÞ � k1 sinðk1LÞ�½cosðk2LÞ � cosðk1LÞ�,

c4 ¼ ðk1 � k2Þ cosððk1 þ k2ÞLÞ½sinðk1lÞ � sinðk2LÞ�

þ ðk1 � k2Þ sinððk1 þ k2ÞLÞ½cosðk2LÞ � cosðk1LÞ�,

and the imaginary parts yield

sinðk0xsÞ

sinðk0ðL� xsÞÞ
¼

�A11
c5

½1� cosððk1 � k2ÞLÞ�
þ Zon

A11
c6

½1� cosððk1 � k2ÞLÞ�

, (49)

where

c5 ¼ ½k1 cosðk1LÞ � k2 cosðk2LÞ�½cosðk2LÞ � cosðk1LÞ�

þ ½k2 sinðk2LÞ � k1 sinðk1LÞ�½sinðk1LÞ � sinðk2LÞ�,

c6 ¼ ðk1 � k2Þ cosððk1 þ k2ÞLÞ½cosðk2LÞ � cosðk1LÞ�

� ðk1 � k2Þ sinððk1 þ k2ÞLÞ½sinðk1LÞ � sinðk2KÞ�.
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The common solution from Eqs. (47) and (49) is

cosðk1LÞ ¼ cosðk2LÞ ) Z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2m2A2

11

o2
nL2A2

�
4A11I0

A2

s
; m ¼ 1; 2; . . . (50)

such that Z is real and positive. The common solution from Eqs. (46) and (48) is

2k0

k1 � k2
¼

sinðk0LÞ

1þ cosðk0LÞ

� �
sinðk1LÞ � sinðk2LÞ þ sinððk1 � k2ÞLÞ

1� cosððk1 � k2ÞLÞ

� �
. (51)

Imposing the solution from Eq. (50) in Eq. (51), one can write

sinððk1 � k2ÞLÞ ¼ 0) Z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2l2A2

11

o2
nL2A2

�
4A11I0

A2

s
; l ¼ 1; 2; . . . (52)

such that Z is real and positive, which is an essential condition for guaranteed stability and wave
absorbing properties. This implies the common solution for l ¼ 2m: Fig. 5 shows the admissible
solution space in Z to achieve this exact dynamics artificially introduced through the feedback
controllers. The figure also shows the range of wavelengths l1 ¼ 2p=k1 and l2 ¼ 2p=k2 at which
such dynamics can be introduced. The figure also shows that for a specified set of Z; a set of
discrete values of forward and backward propagating waves can be controlled exactly.
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Fig. 5. Solution space for single sensor feedback for an arbitrary sensor location xs: a ¼ Z2=ð4rEÞ: The arrows indicate
the growth of the envelops for increasing m in Eq. (50).
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With the help of Eqs. (46)–(49), the transfer function of the two controllers can be written as

ĉ1 ¼
1

sinðk0ðL� xsÞÞ
Ĝ1ðZ;onÞ; ĉ2 ¼

1

sinðk0xsÞ
Ĝ2ðZ;onÞ, (53)

where

Ĝ1ðZ;onÞ ¼
1

ðe�ik2L � e�ik1LÞ
� iA11 sinðk0LÞðk1e

�ik2L � k2e
�ik1LÞ

�

þ i A11k0 cosðk0LÞ �
1

2
ZAon sinðk0LÞ

	 

ðe�ik2L � e�ik1LÞ

�
, ð54Þ

Ĝ2ðZ;onÞ ¼
1

ðe�ik2L � e�ik1LÞ
� iA11 sinðk0LÞðk1e

�ik1L � k2e
�ik2LÞ

�

þ i A11k0 cosðk0LÞ þ
1

2
ZAon sinðk0LÞÞðe

�ik2L � e�ik1L

	 
�
. ð55Þ
5.1. Controller characteristics

Eqs. (54) and (55) show that for a sensor location xs; the poles of the transfer functions are at

sinðk0ðL� xsÞÞ ¼ 0 )
xs

L
¼ 1�

p

2

� � l0
L
; p ¼ 0; 1; 2; . . . (56)

and

sinðk0xsÞ ¼ 0 )
xs

L
¼

q

2

� � l0
L
; q ¼ 0; 1; 2; . . . , (57)

where l0 ¼ 2p=k0 is the wavelength in the nominal system. Fig. 6 shows the distribution of the
transfer function poles over the frequency axis, depending upon the sensor location (xs=L)
governed by Eqs. (56) and (57).
It can be seen in Eqs. (54) and (55) that the other poles of the transfer functions, which are

dependent on Z; satisfy the condition

e�ik2L � e�ik1L ¼ 0, (58)

which leads to Eqs. (50) and (52). Distribution of these poles over the frequency axis for a given Z
is the horizontal cut on the branches of a plotted in Fig. 5. This indicates that at higher values of
the damping, the desired controllers will have more number of their poles concentrated at low-
frequency region. By studying the numerators of Ĝ1 and Ĝ2; it can be observed that the zeros of
the transfer functions lie at Z ¼ 0: Hence they do not have any influence on the controller
sensitivity. Figs. 7–10 show the amplitude and phase of the two transfer functions for various
target a: It can be seen that for both the controllers, the poles, which are governed by the damping
coefficient Z; should be placed identically over the frequency axis. Between the two transfer
functions, an anti-symmetric phase behavior with respect to each of the poles can be noted. This is
irrespective of the values of the target Z: It can also be seen from these figures that more number of
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poles move in toward the lower frequencies for higher damping. However, for broadband
applications involving shock-type loading on the material system, these may create additional
disturbances outside the target range of frequencies. Therefore, in such situations, a band-pass-
type filter may be required to augment the controller design.
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6. Conclusions

Two types of material system, namely the passive system and the active system, are considered
in this paper to study their equivalence in terms of wave control performance. The passive
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material system, which has stress relaxation property, shows asymmetry of the wave dispersion with
respect to the half-line (x ¼ 0). Although non-dispersive, the forward propagation is faster
compared to the backward propagation in such system. In order to introduce the corresponding
damping mechanism in the active material system with array of active transducers and feedback
controllers, a systematic design methodology is proposed. The power flow and the asymptotic
stability of such equivalent system are discussed. The results show that unconditional stability can
be achieved if appropriate boundary control mechanism is designed. The exact solution space in
terms of the target damping coefficient and target wavelengths is obtained. The characteristics of the
feedback controller transfer functions is discussed by considering the placement of the sensor and
variation in the target damping coefficient. Similar design methodology may be employed for other
types of dispersive and dissipative material systems involving more complex constitutive property of
the passive material and array of micro-electro-mechanical transducers and microcontrollers.
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